

Introduction to Statistics
in
SQL Server

Andy Warren
www.sqlandy.com
@sqlandy
www.linkedin.com/in/sqlandy

Why Do We Need Statistics?

We can’t build a good plan to get the rows we
need without having an idea of how many rows
we’re going to get!

A Tale of Two Queries

Question: Will the two queries below use a
similar query plan?

A) select * from person.Contact where LastName like 'S%‘

B) select * from person.Contact where LastName like 'SM%'

Not enough info you say? What if I told you that:

Query A returns 2694 rows

Query B return 669 rows

LastName Like S% = Scan

For Query A, we see that SQL has decided to do a
table scan – brute force!

LastName Like Sn% = Lookup

For Query B, we see that SQL has decided to take a
lighter weight approach – a bookmark lookup

Why Are the Plans Different?

SQL has a method that we can use to get an
approximation of how many rows will be returned
– that is our “statistics”. That in turn allows us to
make smarter decisions about the plan we choose
for the query.

High Level Overview of Stats

Created in various ways:
• Auto creation

• Based on indexes

• Manually

Maintained in various ways:
• Auto update based on thresholds

• Index rebuilds

• Maintenance plans

• Manual updates

Are a point in time view of the data distribution

Creating Stats – Via Indexes

When an index is created a matching stat is
created. This will handle 95% of your stats needs.

Creating Stats – Via Indexes

Creating Stats - Automatic

The default setting for each database is to have automatic
creation of stats enabled, allowing SQL to create a new stat if a
query uses a column in a where clause or join that doesn’t have
a stat. Think of this as a safety net for stats.

Creating Stats - Automatic

Example: System created statistic

Creating Stats - Manually

It’s not common, but you might need to create a
statistic manually. Here is an example:

create statistics EmailAddress on person.contact (EmailAddress)

How are Statistics Updated?

Unlike indexes, statistics are a batch operation.
That decreases the load on the system, but it
means that over time the accuracy of the stats can
decrease as the distribution of the data changes
from what it was at the time we built our statistic.

The fix is to periodically update our statistics:

• By association when we rebuild indexes

• Directly, either manually or via a job

• Based on thresholds if auto update enabled

Updating Stats Via Rebuild

• This only works for a true rebuild, not a
defrag/reorg!

• This only works if they created the index with
the default behavior to create/maintain stats
(STATISTICS_NORECOMPUTE = OFF)

• This only works for index related stats. Stats
created manually or auto created are not
changed as part of an index rebuild even if one of
the columns is part of an index

Updating Stats Directly

The most surgical approach to updating stats is to
use UPDATE STATISTICS which allows us to:

• Update a single statistic, or all stats on a table

• Specify the sampling rate or reuse the previous sample
rate

• Update index based stats, other stats, or both

• Disable automatic statistics update on a stat

If you need to update all the stats in a database,
look at sp_updatestats or maintenance plans

Updating Stats Directly

Examples:
• update statistics Person.contact(ndxemail) with fullscan

• update statistics Person.contact(ndxemail) with sample 50
PERCENT

• update statistics Person.contact with columns

• update statistics Person.contact with index

Note: If the table is less than 8 meg then you will get a 100%
sample even if you request less.

Updating Stats Directly

Updating Stats Directly

For routine maintenance you can also use
sp_updatestats:
• Only updates stats that need updating (based on update

thresholds we’ll cover in a bit)

• Does rebuild stats for disabled non-clustered indexes

• By default will select a “default” sample rate, if you want to
use the one you set, use ‘resample’

Sp_updatestats

Sp_updatestats ‘resample’

Updating Stats Automatically

Update Thresholds

The auto update stats event will fire based on
these rules:
• When table row count goes from zero to not zero

• Table had less than 500 rows and there have been more than
500 changes to the leading column of the stat since the last
stat update

• Table had more than 500 rows and there have been at least
500 + 20% changes to the leading column in the stat since the
last update

• For temp tables, the first update fires at six changes

Viewing Stats

As you might expect, there are a few different ways to view the
statistics so you can examine the details:

• Management Studio (handy, no syntax to remember!)

• DBCC Show_Statistics

You can also get info about stats name and status by queryingL

• Sys.Stats

• Sys.Stats_Columns

We’re going to focus on DBCC Show_Statistics

DBCC Show_Statistics

dbcc show_statistics ('person.contact',
'ndxlastname')

Understanding the Header

Understanding The Header

Column Densities

Not all that interesting, but sometimes can help
you realize that you might gain from re-ordering
columns.

The Good Stuff

More Good Stuff

Using Multiple Ranges

If All Goes Well

With the necessary stats in place and appropriate
updates, then we’ve got the information we need
for SQL to make a pretty good guess on how many
rows will match, and from there build a query plan
that matches the expected load.

This happens most of the time.

But I bet you want to hear about how things can
go awry!

And When Things Go Wrong

Typically stats related problems fall into a couple
of categories:

• No stats

• Out of date stats (let’s say “not updated lately”)

And one problem that can happen even with
current stats:

• Uneven data distribution

No Stats = Guess = Bad!

If we have no stats for a column, we force the query
optimizer to guess – not good

No Stats - Should Be Rare

If you keep the default behaviors enabled you’ll
always have stats. Well, almost always. There are
a few edge cases where things don’t behave quite
as expected:

• No stats on table variables

• No stats on table valued functions

• No stats on CLR columns unless binary ordering

Otherwise, if you find you’re missing stats, get that
fixed and then keep it fixed!

Good Stats Gone Bad

Having a significant mismatch in actual vs
estimated often indicates stale stats

Advanced Techniques

• DB Setting: Update Statistics Async prevents
delays when a stats update is triggered by
allowing the query to use the existing plan until
the new stats are ready

• Query Hint: OPTION (KEEP PLAN) changes the
threshold for recompile on temp tables to match
that of permanent tables (rarely used)

• Query Hint: OPTION (KEEPFIXED PLAN) will
prevent recompiles based on changes to stats
(rarely used)

Best Practices

• Enable auto create, auto update

• Update stats as often as you rebuild indexes, or
more so

• Update only column statistics if you’ve already
rebuilt your indexes in the same session

• Watch for stats related issues by checking
estimated vs. actual rows in the query plan

Resources

• 2005 Stats Whitepaper

• 2008 Stats Whitepaper

• Paul Randall on Auto Created Stats

• Kim Tripp on Filtered Stats

• Glenn Berry on Out of Date Stats

• Recompilation Whitepaper

• Kendal Van Dyke on Identifying Overlapping Stats

http://www.microsoft.com/technet/prodtechnol/sql/2005/qrystats.mspx
http://msdn.microsoft.com/en-us/library/dd535534(SQL.100).aspx
http://www.sqlskills.com/BLOGS/PAUL/category/Statistics.aspx
http://www.sqlskills.com/BLOGS/KIMBERLY/category/Statistics.aspx
http://glennberrysqlperformance.spaces.live.com/blog/cns!45041418ECCAA960!7073.entry
http://technet.microsoft.com/en-us/library/cc966425.aspx
http://www.kendalvandyke.com/2010/09/tuning-tip-identifying-overlapping.html

Thanks for Attending!

Please connect with me

www.sqlandy.com

@sqlandy

www.linkedin.com/in/sqlandy

SP_HelpStats - Deprecated

Sp_helpstats is a quick way to return stats
information about a table, but it has been
deprecated. Instead, use the sys.stats and
sys.stats_columns tables to get the same info

SP_CreateStats

Creates single column stats for any column that
isn’t the leading column in an existing statistic.

SP_AutoStats

Used to change the NO_RECOMPUTE setting for
all statistics on a table or index. The
NO_RECOMPUTE flag is stored at the stat level in
sys.stats.

Sys.Stats

Sys.Stats and Sys.Stats_Columns let you see all the
available statistics. For example, we can use this
to see which stats have NO_RECOMPUTE enabled.

